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Self-Introduction

https://www.linkedin.com/in/lyantech

Liang Yan

Sr. Software Engineer II, DigitalOcean, Louisville KY

• Over ten years industry experience on Virtualization, mostly on GPU, 
Network and Live Migration.

• Current focus on Distributed Machine Learning Infra for Large Model

• Opensource and Arm64 Board Enthusiast
http://xryan.net
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Agenda

Where the story begins

Distributed ML

FlexFlow and More

A practice to AlexNet in FlexFlow

Conclusion



Large Models

https://informationisbeautiful.net/



DataSet Size

https://epochai.org/blog/trends-in-training-dataset-sizes

Training datasets for language (left) and vision (right).



Distributed machine learning

• Data Parallelism:  different node different data same model

  Horovod、Tensorflow Estimator、PyTorch DDP

• Model Parallelism: different node different part of mode same data

• PipeLine Parallelism:
  Gpipe、PipeDream、PipeMare

• Operator Parallelism:
  Mesh Tensorflow、FlexFlow、OneFlow、MindSpore

https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training



https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training

Distributed machine learning



In general, parameter server works better if you have a large number of unreliable and not so 
powerful machine. Ring-AllReduce works better if you have a small amount of fast devices(variance 
of step time between each device is small) run in a controlled environment with strong connected 
links.

PS: performance bottleneck from communication
Ring - AllReduce: linear relationship with GPUs

Distributed machine learning



FlexFlow Architecture

Flexflow(Pytorch/Keras)

Flexflow C++ 
implementation

Custom Mapper

Legion C++ Runtime API Mapper Interface

Legion Runtime

Realm Runtime

GasNet CUDA

HW



FlexFlow

Define a search space 
of possible 

parallelization strategies

A cost model and a 
search algorithm

Optimized Parallelization 
strategies



SOAP

Samples: partitioning training samples (Data Parallelism)
Operators
Attributes
Parameters



FlexFlow Simulator

Operator Graph
DotFile<SimTask *> taskGraph;

Device Topology:
MachineModel

std::map<Op*, ParallelConfig> 
strategies;

•Input
1. Operator graph G: node as 

operator and edge as tensor
2. Device Topology D: node as 

device and edge as connection 
like NVLink, PCI-e, IB, RDMA...

Execution Optimizer:
Found the efficient strategy from SOAP 
space by MCMC, then feed into simulator 
to find the best strategy.



MCMC  => FFModel::optimize

Start from a random strategy(data parallelism by default)

For iter :=1 to budget:

Generate a new strategy S* from s by updating one layer

If cost(S*) < cost(S):

Replace S with S*

 Else:

   Replace S with S* with probability exp(a *(cost(S) - cost(S*)))

Return the best discovered S



when run the func get_random_parallel_configof current ops(Linear), the product of the new rewrite 
ParallelStrategyConfig is allowed to be less than the number of GPUs (i*j <= total_devices).

FlexFlow allows using a subset of GPUs if that's beneficial (e.g., communication cost outweighs performance gains). Image 
data and model parallelism as two dimensions FlexFlow considers for parallelizing Linear operators. In this case, the 
product of the degree of data and model parallelism is the overall number of GPUs used for training a Linear op.

get_random_parallel_config



Simulate_Cost
Step 1: register forward and backward tasks
       model layer => op(partition ndims) => task_manager
Step 2: insert dependencies and comm. tasks before compute tasks
      add_task_dependencies_with_xfer, iterate inputOp,
Step 2.5: add finals tasks for each compute device to capture the returning  comm tasks from 
parameter servers
       new_barrier_task
Step 3a: consider backpropagation and weight update are overlapped
       add a compute task for parameter update
Step 3b: Bulk Synchronous Model  
       add a per-device barrier before weight update
Step 4: add ready tasks into ready_queue
       std::priority_queue<SimTask*, std::vector<SimTask*>, SimTaskCompare> ready_queue;
Step 5: perform simulation *

Step 5.5: update nccl_time

Step 6: add penalty to strategies that exceed the memory limits on devices
       Penalize the total runtime by 1ms if we exceed the memory budget by 1MB



What we do

A customized Hardware Topology which is closer to the cluster in datacenter today!



Practice in Transformer AlexNet

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf



AlexNet Operator & Tensor Layer

Ops channel kernelH KernelW strideH strideW paddingH paddingW Activate

input 3 299 299

conv2d 64 11 11 4 4 2 2 relu

pool2d 3 3 2 2 0 0

conv2d 192 5 5 1 1 2 2 relu

pool2d 3 3 2 2 0 0

conv2d 384 3 3 1 1 1 1 relu

conv2d 256 3 3 1 1 1 1 relu

conv2d 256 3 3 1 1 1 1 relu

pool2d 3 3 2 2 0 0

flat

dense 4096 relu

dense 4096 relu

dense 10

softmax



AlexNet Process in FlexFlow

FFconfig FFmodel Tensor layer Optimizer compile(*) 

data_loader start_timer
iterate 

batches      
start_trace ff.forward

ff.zero_gradients
ff.backward ff.update end_trace end_timer

print result



Strategy => FFModel::optimize

=========== Best Discovered Strategy ==========
[Conv2D_100] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Conv2D_101] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Pool2D_102] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Flat_103] num_dims(2) dims[1,2] device_ids[0,1]
[Dense_104] num_dims(2) dims[1,1] device_ids[1]
[Dense_105] num_dims(2) dims[1,2] device_ids[0,1]
[Softmax_106] num_dims(2) dims[1,2] device_ids[0,1]

Conv2D_100   -> name of the operator
0             -> the device that the operator can be executed on, 0 means GPU, 1 means CPU
4             -> the dimensions of the input tensor of the operator
1 1 1 2          -> how each parallelizable dimension is parallelized, 1 means no parallelization, n means 
this                   dimension is divided into n pieces for parallelization
2              -> number of devices the operator is executed on
0 1            -> device id the operator is executed on



Final look



Evaluation



Evaluation



Conclusion

1. We focus on the simulator and search algorithm

2. We are extending the machine topology 
to heterogeneous GPU capability
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Q & A

Thanks!
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