FlexFlow: unveiling the optimal parallel strategy for your LLMs automatically

Liang Yan
09/09/2023
Self-Introduction

Liang Yan

Sr. Software Engineer II, DigitalOcean, Louisville KY

• Over ten years industry experience on Virtualization, mostly on GPU, Network and Live Migration.

• Current focus on Distributed Machine Learning Infra for Large Model

• Opensource and Arm64 Board Enthusiast

https://www.linkedin.com/in/lyantech
Agenda

- Where the story begins
- Distributed ML
- FlexFlow and More
- A practice to AlexNet in FlexFlow
- Conclusion
Large Models

https://informationisbeautiful.net/
Training datasets for language (left) and vision (right).

https://epochai.org/blog/trends-in-training-dataset-sizes
Distributed machine learning

- **Data Parallelism:** different node different data same model
 - Horovod, Tensorflow Estimator, PyTorch DDP

- **Model Parallelism:** different node different part of mode same data

- **PipeLine Parallelism:**
 - Gpipe, PipeDream, PipeMare

- **Operator Parallelism:**
 - Mesh Tensorflow, FlexFlow, OneFlow, MindSpore

https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training
Distributed machine learning

https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training
In general, parameter server works better if you have a large number of unreliable and not so powerful machine. Ring-AllReduce works better if you have a small amount of fast devices (variance of step time between each device is small) run in a controlled environment with strong connected links.

PS: performance bottleneck from communication
Ring - AllReduce: linear relationship with GPUs
FlexFlow Architecture

- Flexflow (Pytorch/Keras)
- Flexflow C++ implementation
- Custom Mapper
- Legion C++ Runtime API
- Mapper Interface
- Legion Runtime
- Realm Runtime
- GasNet
- CUDA
- HW
FlexFlow

- Define a search space of possible parallelization strategies
- A cost model and a search algorithm
- Optimized Parallelization strategies
Samples: partitioning training samples (Data Parallelism)
Operators
Attributes
Parameters
FlexFlow Simulator

• Input
 1. Operator graph G: node as operator and edge as tensor
 2. Device Topology D: node as device and edge as connection like NVLink, PCI-e, IB, RDMA...

Execution Optimizer:
Found the efficient strategy from SOAP space by MCMC, then feed into simulator to find the best strategy.
MCMC => FFModel::optimize

Start from a random strategy (data parallelism by default)

For iter := 1 to budget:

- Generate a new strategy S^* from s by updating one layer
- If cost(S^*) < cost(S):
 - Replace S with S^*
- Else:
 - Replace S with S^* with probability $\exp(a \times (\text{cost}(S) - \text{cost}(S^*)))$

Return the best discovered S
when run the func `get_random_parallel_config` of current ops(Linear), the product of the new rewrite ParallelStrategyConfig is allowed to be less than the number of GPUs ($i \times j \leq total_devices$).

FlexFlow allows using a subset of GPUs if that's beneficial (e.g., communication cost outweighs performance gains). Image data and model parallelism as two dimensions FlexFlow considers for parallelizing Linear operators. In this case, the product of the degree of data and model parallelism is the overall number of GPUs used for training a Linear op.
Simulate_Cost

Step 1: register forward and backward tasks
 model layer => op(partition ndims) => task_manager

Step 2: insert dependencies and comm. tasks before compute tasks
 add_task_dependencies_with_xfer, iterate inputOp,

Step 2.5: add finals tasks for each compute device to capture the returning comm tasks from parameter servers
 new_barrier_task

Step 3a: consider backpropagation and weight update are overlapped
 add a compute task for parameter update

Step 3b: Bulk Synchronous Model
 add a per-device barrier before weight update

Step 4: add ready tasks into ready_queue
 std::priority_queue<SimTask*, std::vector<SimTask*>, SimTaskCompare> ready_queue;

Step 5: perform simulation *

Step 5.5: update nccl_time

Step 6: add penalty to strategies that exceed the memory limits on devices
 Penalize the total runtime by 1ms if we exceed the memory budget by 1MB
What we do

A customized Hardware Topology which is closer to the cluster in datacenter today!
Practice in Transformer AlexNet

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
AlexNet Operator & Tensor Layer

<table>
<thead>
<tr>
<th>Ops</th>
<th>channel</th>
<th>kernelH</th>
<th>KernelW</th>
<th>strideH</th>
<th>strideW</th>
<th>paddingH</th>
<th>paddingW</th>
<th>Activate</th>
</tr>
</thead>
<tbody>
<tr>
<td>input</td>
<td>3</td>
<td>299</td>
<td>299</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv2d</td>
<td>64</td>
<td>11</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>relu</td>
</tr>
<tr>
<td>pool2d</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>conv2d</td>
<td>192</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>relu</td>
</tr>
<tr>
<td>pool2d</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>conv2d</td>
<td>384</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>relu</td>
</tr>
<tr>
<td>conv2d</td>
<td>256</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>relu</td>
</tr>
<tr>
<td>pool2d</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>flat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>dense</td>
<td>4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>relu</td>
</tr>
<tr>
<td>dense</td>
<td>4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>relu</td>
</tr>
<tr>
<td>dense</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>softmax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AlexNet Process in FlexFlow

1. Data_loader → ff.zero_gradients
2. ff.forward → iterate_batches
3. ff.backward → ff.update
4. start_trace → end_trace
5. compile(*) → start_timer
6. end_timer
7. print_result
Strategy => FFModel::optimize

========== Best Discovered Strategy ==========
[Conv2D_100] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Conv2D_101] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Pool2D_102] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Flat_103] num_dims(2) dims[1,2] device_ids[0,1]
[Dense_104] num_dims(2) dims[1,1] device_ids[1]
[Dense_105] num_dims(2) dims[1,2] device_ids[0,1]
[Softmax_106] num_dims(2) dims[1,2] device_ids[0,1]

Conv2D_100 -> name of the operator
0 -> the device that the operator can be executed on, 0 means GPU, 1 means CPU
4 -> the dimensions of the input tensor of the operator
1 1 1 2 -> how each parallelizable dimension is parallelized, 1 means no parallelization, n means this dimension is divided into n pieces for parallelization
2 -> number of devices the operator is executed on
0 1 -> device id the operator is executed on
Final look
Evaluation

(a) Per-iteration execution time.

(b) Overall data transfers per iteration.

(c) Overall task runtime per iteration.
Evaluation

![Graph showing average training loss over training time for TensorFlow and FlexFlow](image)

![Graphs showing real execution time vs. simulated execution time for Inception-v3 and NMT](image)
1. We focus on the simulator and search algorithm

2. We are extending the machine topology to heterogeneous GPU capability
1. https://flexflow.ai/
2. https://informationisbeautiful.net/
Q & A

Thanks!