
digitalocean.com

FlexFlow: unveiling the optimal parallel strategy
for your LLMs automatically

Liang Yan
09/09/2023

0909ttps://w

ww.linkedin.

co

OLF 2023

Self-Introduction

https://www.linkedin.com/in/lyantech

Liang Yan

Sr. Software Engineer II, DigitalOcean, Louisville KY

• Over ten years industry experience on Virtualization, mostly on GPU,
Network and Live Migration.

• Current focus on Distributed Machine Learning Infra for Large Model

• Opensource and Arm64 Board Enthusiast
http://xryan.net

https://www.linkedin.com/in/lyantech
http://xryan.net

2

Agenda

Where the story begins

Distributed ML

FlexFlow and More

A practice to AlexNet in FlexFlow

Conclusion

Large Models

https://informationisbeautiful.net/

DataSet Size

https://epochai.org/blog/trends-in-training-dataset-sizes

Training datasets for language (left) and vision (right).

Distributed machine learning

• Data Parallelism: different node different data same model

 Horovod、Tensorflow Estimator、PyTorch DDP

• Model Parallelism: different node different part of mode same data

• PipeLine Parallelism:
 Gpipe、PipeDream、PipeMare

• Operator Parallelism:
 Mesh Tensorflow、FlexFlow、OneFlow、MindSpore

https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training

https://www.researchgate.net/publication/362249737_Dive_into_Big_Model_Training

Distributed machine learning

In general, parameter server works better if you have a large number of unreliable and not so
powerful machine. Ring-AllReduce works better if you have a small amount of fast devices(variance
of step time between each device is small) run in a controlled environment with strong connected
links.

PS: performance bottleneck from communication
Ring - AllReduce: linear relationship with GPUs

Distributed machine learning

FlexFlow Architecture

Flexflow(Pytorch/Keras)

Flexflow C++
implementation

Custom Mapper

Legion C++ Runtime API Mapper Interface

Legion Runtime

Realm Runtime

GasNet CUDA

HW

FlexFlow

Define a search space
of possible

parallelization strategies

A cost model and a
search algorithm

Optimized Parallelization
strategies

SOAP

Samples: partitioning training samples (Data Parallelism)
Operators
Attributes
Parameters

FlexFlow Simulator

Operator Graph
DotFile<SimTask *> taskGraph;

Device Topology:
MachineModel

std::map<Op*, ParallelConfig>
strategies;

•Input
1. Operator graph G: node as

operator and edge as tensor
2. Device Topology D: node as

device and edge as connection
like NVLink, PCI-e, IB, RDMA...

Execution Optimizer:
Found the efficient strategy from SOAP
space by MCMC, then feed into simulator
to find the best strategy.

MCMC => FFModel::optimize

Start from a random strategy(data parallelism by default)

For iter :=1 to budget:

Generate a new strategy S* from s by updating one layer

If cost(S*) < cost(S):

Replace S with S*

 Else:

 Replace S with S* with probability exp(a *(cost(S) - cost(S*)))

Return the best discovered S

when run the func get_random_parallel_configof current ops(Linear), the product of the new rewrite
ParallelStrategyConfig is allowed to be less than the number of GPUs (i*j <= total_devices).

FlexFlow allows using a subset of GPUs if that's beneficial (e.g., communication cost outweighs performance gains). Image
data and model parallelism as two dimensions FlexFlow considers for parallelizing Linear operators. In this case, the
product of the degree of data and model parallelism is the overall number of GPUs used for training a Linear op.

get_random_parallel_config

Simulate_Cost
Step 1: register forward and backward tasks
 model layer => op(partition ndims) => task_manager
Step 2: insert dependencies and comm. tasks before compute tasks
 add_task_dependencies_with_xfer, iterate inputOp,
Step 2.5: add finals tasks for each compute device to capture the returning comm tasks from
parameter servers
 new_barrier_task
Step 3a: consider backpropagation and weight update are overlapped
 add a compute task for parameter update
Step 3b: Bulk Synchronous Model
 add a per-device barrier before weight update
Step 4: add ready tasks into ready_queue
 std::priority_queue<SimTask*, std::vector<SimTask*>, SimTaskCompare> ready_queue;
Step 5: perform simulation *

Step 5.5: update nccl_time

Step 6: add penalty to strategies that exceed the memory limits on devices
 Penalize the total runtime by 1ms if we exceed the memory budget by 1MB

What we do

A customized Hardware Topology which is closer to the cluster in datacenter today!

Practice in Transformer AlexNet

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

AlexNet Operator & Tensor Layer

Ops channel kernelH KernelW strideH strideW paddingH paddingW Activate

input 3 299 299

conv2d 64 11 11 4 4 2 2 relu

pool2d 3 3 2 2 0 0

conv2d 192 5 5 1 1 2 2 relu

pool2d 3 3 2 2 0 0

conv2d 384 3 3 1 1 1 1 relu

conv2d 256 3 3 1 1 1 1 relu

conv2d 256 3 3 1 1 1 1 relu

pool2d 3 3 2 2 0 0

flat

dense 4096 relu

dense 4096 relu

dense 10

softmax

AlexNet Process in FlexFlow

FFconfig FFmodel Tensor layer Optimizer compile(*)

data_loader start_timer
iterate

batches
start_trace ff.forward

ff.zero_gradients
ff.backward ff.update end_trace end_timer

print result

Strategy => FFModel::optimize

=========== Best Discovered Strategy ==========
[Conv2D_100] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Conv2D_101] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Pool2D_102] num_dims(4) dims[1,1,1,2] device_ids[0,1]
[Flat_103] num_dims(2) dims[1,2] device_ids[0,1]
[Dense_104] num_dims(2) dims[1,1] device_ids[1]
[Dense_105] num_dims(2) dims[1,2] device_ids[0,1]
[Softmax_106] num_dims(2) dims[1,2] device_ids[0,1]

Conv2D_100 -> name of the operator
0 -> the device that the operator can be executed on, 0 means GPU, 1 means CPU
4 -> the dimensions of the input tensor of the operator
1 1 1 2 -> how each parallelizable dimension is parallelized, 1 means no parallelization, n means
this dimension is divided into n pieces for parallelization
2 -> number of devices the operator is executed on
0 1 -> device id the operator is executed on

Final look

Evaluation

Evaluation

Conclusion

1. We focus on the simulator and search algorithm

2. We are extending the machine topology
to heterogeneous GPU capability

Reference

1. https://flexflow.ai/

2. https://informationisbeautiful.net/

3. https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-
Paper.pdf

4. https://arxiv.org/abs/1807.05358

5. https://epochai.org/blog/trends-in-training-dataset-sizes

https://flexflow.ai/
https://informationisbeautiful.net/
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://arxiv.org/abs/1807.05358
https://epochai.org/blog/trends-in-training-dataset-sizes

Q & A

Thanks!

	Slide 1: FlexFlow: unveiling the optimal parallel strategy for your LLMs automatically
	Slide 2: Self-Introduction
	Slide 3
	Slide 4: Large Models
	Slide 5: DataSet Size
	Slide 6: Distributed machine learning
	Slide 7: Distributed machine learning
	Slide 8: Distributed machine learning
	Slide 9: FlexFlow Architecture
	Slide 10: FlexFlow
	Slide 11: SOAP
	Slide 12: FlexFlow Simulator
	Slide 13
	Slide 14
	Slide 15: Simulate_Cost
	Slide 16: What we do
	Slide 17: Practice in Transformer AlexNet
	Slide 18: AlexNet Operator & Tensor Layer
	Slide 19: AlexNet Process in FlexFlow
	Slide 20
	Slide 21: Final look
	Slide 22: Evaluation
	Slide 23: Evaluation
	Slide 24: Conclusion
	Slide 25: Reference
	Slide 26: Q & A

