Kubeflow:
Bring your ML project into Production

Liang Yan
Sr. Software Engineer, DigitalOcean
Liang Yan

Software Engineer
OpenSUSE Member
Open-Source Advocator(KY OSS)

Louisville, KY

Interests:
• Virtualization
• SysML/Distributed ML
• Infrastructure build and optimization
• ARM64 board Enthusiast
• DevOps

https://xryan.net
Outline

- Prologue
- Kubeflow
- Kubeflow Components
- Demo
- Beyond
- Q&A
Prologue

Prologue

Flight Delay Predictor:
https://github.com/xrlyan/Flight-Delay-Prediction-Based-on-Neural-Networks

Input:
• Flight no
• Flight date

Output:
• Delay possibility

Features:
• Depart/Arrive airport
• Depart/Arrive time
• Depart/Arrive city weather
• Flight model
• Flight History delay rate

Prologue

As a Software Engineer:

As a Data Scientist/Engineer:

Eventually, it becomes:
Kubeflow-Central-dashboard
Kubeflow is:

- K8S + TensorFlow
- Application Toolkit
- Orchestration
- Cloud Native
- DevOps/MLOps

Kubeflow is not:

- K8S + TensorFlow
- Application
- Scheduler
- Machine Learning Algorithm
- Machine Learning Framework
Kubeflow

Machine Learning Orchestration Platform:

1. Orchestrate pipeline
2. Orchestrate ML task

Great mind think alike!

Pic: https://codeantenna.com/a/tSKAKL3Yku
Kubeflow components
Jupyter-notebook
An implementation for AutoML: tune hyperparameter automatically

Three CRDs:
- experiment
- suggestion
- trial

The experiment creates multiple trials based on different suggestion algorithms.

https://zhuanlan.zhihu.com/p/133391977
Training Operator

Operator = Controller + CRD + Webhook
Tool: kubebuilder
Chief coordinate training job
PS server, parameter
Worker
Evaluator
KF Serving

The last mile!
KFP DAG

mnist_pipeline 2019-11-19 02-07-07

Graph

- kubeflow-launch...
- convert-mnist-ex...
- train
- inference
- modelpvc
KFP Architecture

https://shikanon.com/2019/%E8%BF%90%E7%BB%B4/kubeflow%E4%BB%8B%E7%BB%8D/
Kubeflow

Experiment Platform:

<table>
<thead>
<tr>
<th>DO-DOKS</th>
<th>kubernetes v1.24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubeflow</td>
<td>v1.6.1</td>
</tr>
<tr>
<td>Linux Distro</td>
<td>Debian 10</td>
</tr>
</tbody>
</table>

Demo:

```bash
while ! kustomize build example | kubectl apply -f -; do echo "Retrying to apply resources"; sleep 10; done
kubectl --kubeconfig=/Users/lyan/kubeflow-kubeconfig.yaml port-forward svc/istio-ingressgateway -n istio-system 8080:80
```

Local Setup:

<table>
<thead>
<tr>
<th>Juju + microk8s</th>
<th>kubernetes v1.22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubeflow</td>
<td>v1.6.0</td>
</tr>
<tr>
<td>Linux Distro</td>
<td>Ubuntu Jammy</td>
</tr>
</tbody>
</table>

https://charmed-kubeflow.io/docs/quickstart
Beyond

Distributed Machine Learning(*)

Why?
Scalability, we really do not need it if it is a small dataset or model or customer base.

What?
Training Operator Scheduling
Inference Model Optimization

How?
Simulate/predict for scheduler
Model compiler

https://wallpaperaccess.com/to-be-continued
https://zhuanlan.zhihu.com/p/548219786
Beyond

Embedded Model

https://tvm.apache.org/
Lesson learned

1. Deployment
 1. Kubevirt 1.22 + kustomize
 2. Disable TLS
 3. Setup/Enable StorageClass

2. Running
 1. docker runtime re-size
 2. docker repository setup

3. Training model
 1. ML training requests a lot resources
 2. Need to do a lot of experiments
 3. Setup environment is time consuming
 4. Needs automation/pipeline

4. System Failure / Efficiency
 Monitor large scale machine clusters are difficult
 Resource Competition
Q & A

Thanks!

Claim:
All the information is based on personal using experience, no preference or commercial advertising. If there are any conflicts, please refer to the statement from providers.
AI Cloud Providers

- Alibaba Cloud
- Amazon Web Services (AWS)
- Baidu AI Cloud
- Google Cloud
- IBM Cloud
- Microsoft Azure
- Oracle Cloud Infrastructure
- Tencent Cloud
- linode
- Paperspace
- Lambda
- Vultr

Support Matrix

<table>
<thead>
<tr>
<th></th>
<th>M60</th>
<th>P4</th>
<th>P40</th>
<th>P100</th>
<th>T4</th>
<th>RTX 6000</th>
<th>V100</th>
<th>A10</th>
<th>A40</th>
<th>A100</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aliyun</td>
<td>✅</td>
<td>❌</td>
<td>✅</td>
<td>✅</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>AWS</td>
<td>✅</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Baidu</td>
<td>✅</td>
<td>✅</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>✅</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Google</td>
<td>✅</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>IBM</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>TPU</td>
</tr>
<tr>
<td>Microsoft</td>
<td>✅</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>✅</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>❌</td>
<td>FPGA/AMD</td>
</tr>
<tr>
<td>Oracle</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Tencent</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Linode</td>
<td>❌</td>
<td></td>
</tr>
<tr>
<td>Paperspace</td>
<td></td>
</tr>
<tr>
<td>Lambda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vultr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>✅</td>
<td></td>
<td></td>
<td>vGPU/MIG</td>
</tr>
</tbody>
</table>

NVIDIA Data Center Products

<table>
<thead>
<tr>
<th>GPU</th>
<th>Compute Capability</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVIDIA A100</td>
<td>8.0</td>
</tr>
<tr>
<td>NVIDIA A60</td>
<td>8.6</td>
</tr>
<tr>
<td>NVIDIA A30</td>
<td>8.0</td>
</tr>
<tr>
<td>NVIDIA A10</td>
<td>8.6</td>
</tr>
<tr>
<td>NVIDIA A16</td>
<td>8.6</td>
</tr>
<tr>
<td>NVIDIA A2</td>
<td>8.6</td>
</tr>
<tr>
<td>NVIDIA T4</td>
<td>7.5</td>
</tr>
<tr>
<td>NVIDIA V100</td>
<td>7.0</td>
</tr>
<tr>
<td>Tesla P100</td>
<td>6.0</td>
</tr>
<tr>
<td>Tesla P40</td>
<td>6.1</td>
</tr>
<tr>
<td>Tesla P4</td>
<td>6.1</td>
</tr>
<tr>
<td>Tesla M60</td>
<td>5.2</td>
</tr>
<tr>
<td>Tesla M40</td>
<td>5.2</td>
</tr>
<tr>
<td>Tesla K90</td>
<td>3.7</td>
</tr>
<tr>
<td>Tesla K40</td>
<td>3.5</td>
</tr>
<tr>
<td>Tesla K20</td>
<td>3.5</td>
</tr>
<tr>
<td>Tesla K10</td>
<td>3.0</td>
</tr>
</tbody>
</table>

AI Cloud Service

• IAAS
 • ML VM Image
 • Container:
 • Docker
 • NGC
 • Conda/pip3

• PaaS
 Help manage data and model
 (paperspace, Colaboratory)

• SaaS
 Help consume AI solution
 (IBM Watson, Google voice)