
Kubernetes Fundamentals

greg@blacksintechnology:~$ whoami

Greg Greenlee

Kubernetes Fundamentals Agenda
● Common terms

● What is Kubernetes (K8’s)?

● Why do we need Kubernetes?

● How does Kubernetes work?

○ K8’s components

○ K8’s objects

● How do we interact w/ Kubernetes?

Common Terms

● Microservices
● Imperative vs Declarative
● Current State vs Desired State
● Cloud native
● Immutable vs Mutable
● Containers
● Container run time
● Orchestration

Imperative vs Declarative

Current State vs Desired State

Current State

Desired State

What is orchestration?
1. The arrangement or scoring of music containers for orchestral application and system

performance.

2. The planning or coordination of the elements of a situation to produce a desired effect,
especially surreptitiously

3.

What is Kubernetes (K8’s)?

● Open sourced in 2014 by Google (shares DNA with Borg and Omega)
● Kubernetes is an orchestration engine for automating deployments, scaling,

managing, and providing the infrastructure to host containerized applications.
● Datacenter OS
● Abstraction - sit above cloud specific platforms

Why do we need Kubernetes?

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container

Container
Container

Container
Container

Container

Declarative

zero downtime updates/rollouts
Online self healing

Immutability,

SPEED, SAFETY &
RELIABILITY

k8’s components

● Write apps as microservices in a
language of your choosing

● Package each service in it’s own
container (Dockerfile)

○ Build image
○ Upload image to a container registry

● Wrap each container in it’s own Pod
● Deploy pod to the cluster via

Deployment, Daemonsets,
Statefulsets, CronJobs, etc

○ kubernetes manifest

Architecture Overview

Kubernetes Control Plane

k8’s Objects

Namespaces

Fraidy
Brainy

Smurfette

Pods
● Kubernetes API object
● Smallest atomic object
● Encapsulates containers
● Can house one or more containers

○ Best practice is have one container per pod unless the containers are tightly coupled
■ Logging container
■ Colocated on same server
■ Share same networking namespace (IP address and port)
■ Same hostname

○ Will these containers work correctly if they land on different nodes

● Rarely create individual pods directly - even single pods

Pod Health and Liveness probes

apiVersion: v1

kind: Pod

metadata:

 labels:

 test: liveness

 name: liveness-http

spec:

 containers:

 - name: liveness

 image: k8s.gcr.io/liveness

 args:

 - /server

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 httpHeaders:

 - name: Custom-Header

 value: Awesome

 initialDelaySeconds: 3

 periodSeconds: 3

Services

Services
● Kubernetes API object
● Exposes an application running on a set of Pods
● Provides stable IP to pods
● Provides DNS
● Service Types

○ ClusterIP - Exposes the Service on an internal IP in the cluster. This type makes the Service
only reachable from within the cluster.

○ NodePort - Exposes the Service on the same port of each selected Node in the cluster using
NAT. Makes a Service accessible from outside the cluster using <NodeIP>:<NodePort>. Superset
of ClusterIP.

○ LoadBalancer - Creates an external load balancer in the current cloud (if supported) and
assigns a fixed, external IP to the Service. Superset of NodePort.

ReplicaSet

ReplicaSets
● Kubernetes API object
● Cluster wide pod manager
● Ensures right number and type of pods are running at all time
● Provides underpinnings of self healing, scaling up and down for apps

DaemonSets
● Kubernetes API object
● Ensures a copy of pod is running across a set of nodes in a k8’s cluster

○ Log collectors
○ Monitoring agents

● Managed by a reconciliation loop
○ New node is added to cluster it makes sure pod is created on the new node

● nodeSelector
○ Limits the daemonset to specific nodes

Deployments
● Kubernetes API object
● Enables you to easily move from one version of code to the next version

○ Application rollouts

● Deployments managed by a Deployment controller
○ You describe a desired state in a Deployment, and the Deployment Controller changes the actual state to the

desired state at a controlled rate.

● Builds off of ReplicaSets
○ Deployments manage ReplicaSets

● Updates/Rollouts/Rollbacks

https://kubernetes.io/docs/concepts/architecture/controller/

Node 1

Pod papa_smurf

Node 2

Pod papa_smurf

Node 3

Pod papa_smurf

Node 1

Node 3

Node 2

Pod papa_smurf Pod papa_smurf

DaemonSet Deployment

Defined in
Kubernetes
manifest

replicaset

Ingress
● Ingress Object (Kubernetes API object)
● Ingress rules
● Ingress Controller

○ Nginx
○ Traefik
○ AKS Application Gateway Ingress

Controller
○ HAProxy Ingress
○ AWS ALB Ingress Controller

●

 internet

 |

 [Ingress]

 --|-----|--

 [Services]

apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
 name: minimal-ingress
 annotations:
 nginx.ingress.kubernetes.io/rewrite-target: /
spec:
 rules:
 - http:
 paths:
 - path: /testpath
 pathType: Prefix
 backend:
 service:
 name: test
 port:
 number: 80

Configmaps
● API object used to store non-confidential data in key-value pairs.
● Pods can consume ConfigMaps

○ Command line arguments to the entrypoint of a container
○ Environment variables for a container
○ Add a file in read-only volume, for the application to read
○ Write code to run inside the Pod that uses the Kubernetes API to read a

ConfigMap

https://kubernetes.io/docs/concepts/workloads/pods/

Secrets
● Kubernetes API object
● Contains small amount of sensitve data
● Can be used in a pod via:

○ As files in a volume
○ Mounted on one or more of its containers.
○ As container environment variable.
○ By the kubelet when pulling images for the Pod

https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets-as-files-from-a-pod
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets-as-environment-variables
https://kubernetes.io/docs/concepts/configuration/secret/#using-imagepullsecrets

How do we interact w/ Kubernetes

kubectl
● Interacts with the k8’s API
● Manages most k8’s objects
● Explore, Verify, Create, Update and Destroy

○ kubectl <verb> <object type> <object>
■ kubectl describe
■ kubectl get
■ kubectl delete
■ kubectl create
■ kubectl apply

Resources

● Kubernetes docs (https://kubernetes.io/docs/home/)
● Minikube (https://github.com/kubernetes/minikube)
● Kubernetes up and running

https://www.amazon.com/Kubernetes-Running-Dive-Future-Infrastructure/dp/1492046531

● https://labs.play-with-k8s.com/
● Kubernetes cheat sheet

(https://kubernetes.io/docs/reference/kubectl/cheatsheet/)

https://kubernetes.io/docs/home/
https://github.com/kubernetes/minikube
https://www.amazon.com/Kubernetes-Running-Dive-Future-Infrastructure/dp/1492046531
https://labs.play-with-k8s.com/
https://kubernetes.io/docs/reference/kubectl/cheatsheet/

