
Abstract and Bio
A SIMPLE RISC-V MULTITASKING OS FOR LEARNING

2021-12-03 @ Ohio Linux Fest, Columbus, Ohio

Abstract:
Explore the line between hardware and software by writing code with absolute control over the cpu and peripherals. We'll explore how to do this using a
completely free and open source simulator (Renode), toolchain (GCC), and instruction set (RISC-V). Using assembly, we'll initialize parts of the system such as CPU
interrupts and privilege levels. Finally we'll review the assembly code for doing a context switch, the key software to which enables multitasking via timesharing.

Bio:
Zak Kohler is a Chemical Engineer by training but a hacker at heart. He started programming in 3rd grade and has never let up. His first foray in open source was in
early high school, and he discovered Linux and Free Software at university. Electronics is his second love and he fuses the two by playing with early computer
hardware, modern microcontrollers and FPGAs. When zak isn't messing with computers he can be found growing plants, drawing, and exploring the world on
foot.

A SIMPLE RISC-V
MULTITASKING OS
FOR LEARNING

2021-12-03 - Ohio Linuxfest - Zak Kohler

Zak Kohler
(y2kbugger)

● Chemical Engineering, University of Akron 2010
● Materials engineer turned software developer

● Relevant Interests:
○ programming, electronics, retrocomputing

● Irrelevant Interests:
○ running, punk rock, cheesemaking

Outline

Motivation

Explain baremetal, risc-v, renode

Operating system background

KohlerOS, my operating system

● Startup
● Shell
● Multitasking, the context switch
● System calls

Motivation

Learning from a toy
Operating System

This talk seeks to explore the line between
hardware and software using a minimal
simulated environment to write and play with a
toy operating system.

Abstraction

Simple interfaces allow complex systems

You don't think about radios each time you send a text via sms,
this is normally considered a good thing.

Video Series on Computer Science "Up another level of abstraction"
https://www.youtube.com/watch?v=tpIctyqH29Q

https://www.youtube.com/watch?v=tpIctyqH29Q

Applications

Operating System

Abstractions in Computers

Physical Silicon Layout

Circuit Schematic

Digital Logic

Datapath

Microcode
IO Systems

CPU / Instruction Set Architecture

DriversCompiler

In Real Life Silicon

Hardware

Software

In pursuit of killing the magic I've been
playing with hardware and toy CPU emulators
This talk is a(nother) step towards building a IRL CPU

What is baremetal?

In the non-embedded world, when you compile and
link a C program into an executable you are doing so
with the intention of running it within a specific
operating system.

In contrast when you compile baremetal or
-freestanding you are telling the compiler that you
intend to run this without relying on an operating
system.

What is baremetal?

This could be used, for example, to write an operating
system. Alternatively it can be used to access the
hardware of a system directly on an embedded
system. Doing so sacrifices higher level luxuries such
as memory management, standard IO, thread/process
control, etc.

Because of this, sometimes it makes sense to run on a
type of minimal OS optimized for embedded, e.g. a
real time operating system (RTOS).

What is RISC-V?

Wikipedia

RISC-V (pronounced "risk-five") is an open
standard instruction set architecture (ISA) based
on established reduced instruction set computer
(RISC) principles. Unlike most other ISA designs,
the RISC-V ISA is provided under open source
licenses that do not require fees to use.

Akin to x86, arm, mips, alpha, 6502, powerpc

What is Renode

Renode is a simulator designed for embedded
firmware, including networks of devices.

Traditional alternatives such as QEMU aren't as
optimized for the embedded space.

Video game console emulators target a specific
platform.

Operating Systems

First operating system:
Human operators

● Batch Processed
● Each program has full

control of the entire
mainframe.

The role of operating
systems

The job of an operating system is to abstract away
hardware. They do this by implementing standard
interface for tasks that talk to real world.

● Input/Output
● Timesharing
● Memory Management
● File systems
● User/Machine Mode

Timesharing

Imagine if this guy had to
manually set the program
counter each time a human
interrupted with some
input...or change out one job
for another thousands of times
per second.

My OS

The job of an operating system is to abstract away
hardware. They do this by implementing standard
interface for tasks that talk to real world.

● Input/Output
● Timesharing
● Memory Management
● File systems
● User/Machine Mode

Monitor/Shell

kos> ?

Programs:

 h: hello world

 e: hello ecall world

 l: laugh

 f: laugh forever

 c: count forever

Shell commands:

 ?: show this help

 @: list stopped processes

 ^: restart all stopped processes in background

 !: stop all background processes.

 C-Z: stop foreground process

 C-C: kill foreground process

The shell's special job:

launch and control other processes.

If the shell launches
programs, how does the
shell get launched?

Early Startup

Setup interrupts

Early Startup

Initialize stack and process pointers

Early Startup

Jump to C to initial rest of kernel

Monitor/Shell

kos> ?

Programs:

 h: hello world

 e: hello ecall world

 l: laugh

 f: laugh forever

 c: count forever

Shell commands:

 ?: show this help

 @: list stopped processes

 ^: restart all stopped processes in background

 !: stop all background processes.

 C-Z: stop foreground process

 C-C: kill foreground process

Programs and Processes

Programs are simply C
functions registered with a
name.

A running program is a
Process.

Scheduling is just a naive
round-robin for all "Ready"
Processes.

Lifecycle of a kOS process

C function Program Process - Ready
Register Initialize

Process - Running

Scheduler

Process - Stopped

Stop

Process - Dead
Kill

Program ends

Launch a simple program using
the shell.

Processes are written as C functions,
but this is out of convenience. We
could add an arbitrary binary loader to
the shell.

DEMO

Ok, that's not very
interesting

It just looks as if the shell is dispatching to a C function
based on user input.

Next I will give a demo to prove that this is not the
case.

DEMO

Context switch

enable preemptive
multitasking

The context switch

A software construct that

● Cannot be written in C
● Is CPU architecture dependent
● Is triggered by a hardware timer interrupt

The basic stages are:

● Backs up state of CPU registers
● Restores a different state
● and then continues execution.

Show Code

Programs and Processes

System Call,
Software Interrupt,
ecall

Software Interrupts

● In an operating system using privilege modes,
processes are prevented from accessing the
hardware directly.

● In order to talk to hardware a process must talk to
the kernel.

Q: How can a process talk to the kernel?

A: Software interrupts

Show Code

How a real standard library
uses system calls (musl)

Wrap Up

Motivation

Explain baremetal, risc-v, renode

Operating system background

My operating system

● Startup
● Shell
● Multitasking, the context switch
● System calls

Further Learning

Topics Not Covered

● Memory management
● Race conditions
● CPU modes/rings
● File Systems
● Drivers

○ UART
○ Timer

● RTOS
● Deploying to hardware

Want to try this out for
yourself?

Last year I covered the basics of using Renode to run
baremetal risc-v code.

https://blog.y2kbugger.com/baremetal-riscv-renode-1.html

Thank You!

@y2kbugger on twitter

https://blog.y2kbugger.com

Questions??

https://blog.y2kbugger.com/baremetal-riscv-renode-1.html

https://blog.y2kbugger.com/

