
Infrastructure as Code with Terraform

greg@blacksintechnology:~$ whoami

Greg Greenlee

Agenda
● What is IaC?

○ Benefits
● What is Terraform?
● Why do we need Terraform?
● How do we use Terraform?

○ Providers
○ Resources
○ Variables (inputs)
○ Outputs
○ Data Structures
○ Modules
○ Conditionals
○ Iterations
○ Terraform State

● How do I get started?

What Is Infrastructure as Code?

The ability to describe/define your infrastructure
and application in source code

Benefits of IaC

● Software methodologies, tools and
practices

○ Code reviews
○ Automated testing
○ linting

Automation

Version Control

RollbackThor-1.0 Thor-1.no

Documentation

Also….

Correlation

Visibility

Traceability

What is Terraform?
● Infrastructure as code management tool that uses a declarative language to

build infrastructure
● Written in Go
● terraform.io

Imperative vs Declarative
Imperative (How)

● Buy chocalate cake mix
● Open cake mix box
● Pour cake mix in bowl
● Add ingredients
● Stir
● Pour in pan
● Preheat oven to 350
● Place pan in oven
● Bake at 350
● etc

Declarative (What)

I need a chocolate cake big enough to feed 20
people

Why do we need Terraform?

Infrastructure is hard!

Idempotent

Cloud agnostic

DEV

STAGING

PRODUCTION

How do we use Terraform?

Installs as a single binary (https://www.terraform.io/downloads.html)

● MacOS
● Linux
● Windows
● FreeBSD
● Solaris

Usage
● Terraform init

○ initializes terraform directory
○ pulls in plugins for specified provider
○ Pulls in modules

● Terraform fmt
○ Rewrites terraform config files to canonical format and style

● Terraform validate
○ Runs checks that verify whether a configuration is syntactically valid and internally consistent

● terraform plan
○ A preview of what changes will be made

● Terraform apply
○ Applies changes

● Terraform destroy
○ Destroys all changes

● Terraform show
○ Shows resources from state file

Providers

Way to interact with service providers (which API to use)

The default provider configuration

provider "aws" {

 region = "us-east-1"

}

Resources
Bread and butter that represents the infrastructure components you want to
manage

● Virtual machines
● Load balancers
● Firewall rules
● Virtual Networks
● Databases
● Message queues
● Data warehouses
● ….etc

Resources - code example
resource "aws_instance" "web" {

 ami = "${data.aws_ami.ubuntu.id}"

 instance_type = "t2.micro"

 tags = {

 Name = "HelloWorld"

 }

}

resource "aws_elb" "bar" {

 name = "foobar-terraform-elb"

 availability_zones = ["us-west-2a" , "us-west-2b" ,
"us-west-2c"]

 instances = ["${aws_instance.web.id}"]

 tags = {

 Name = "foobar-terraform-elb"

 }

}

Variables
● Environment

○ Begins with TF_VAR_

■ export TF_VAR_somevariable=somevalue

● Inputs

● Ouputs

● Data Structures
○ Strings
○ Arrays
○ Maps

Variable example code
resource "aws_instance" "web" {

 instance_type = "t2.micro"

 ami = var.image_id

}

variable "image_id" {

 type = string

 default = "ami-abc123"

}

Conditionals
If statements

If/else

Boolean operations

Conditional example
resource "aws_instance" "vpn" {

 count = "${var.something ? 1 : 0}"

CONDITION ? TRUEVAL : FALSEVAL

}

Iteration
resource "aws_iam_user" "example" {

 count = length(var.user_names)

 name = var.user_names[count.index]

}

variable “user_names” {

 description = “names of users”

 type = “list”

Modules
Reusable code

Collection of resources

Conforms to D-R-Y (don’t repeat yourself) methodology

Module example
SQL module (tf_azurem_sql)

resource "azurerm_sql_server" "test" {

 name = "${var.sql_server_name}"

 resource_group_name = "${var.resource_group_name}"

 location = "${var.resource_group_location}"

}

resource "azurerm_sql_database" "test" {

 name = "${var.sql_database_name}"

 resource_group_name = "${var.resource_group_name}"

 location = "${var.resource_group_location}"

 server_name = "${var.my_sql_server_name}"

SQL module instantiation

module "sql_server_database" {

 source = "git::https://myrepo/sql/_git/tf_azurerm_sql?ref=1.7"

 resource_group_name = "my_resource_group"

 resource_group_location = "useast1"

 sql_server_name = "my_sql_server_name"

 sql_database_name = "my-sql-database"

}

Functions
● String manipulation
● Numeric
● Collection
● Date and time
● ….more

Ex.

> max(12, 54, 3) 54

> join(", ", ["foo", "bar", "baz"]) foo, bar, baz

> timestamp() 2018-05-13T07:44:12Z

> cidrhost("10.12.127.0/20", 16) 10.12.112.16

> concat(["a", ""], ["b", "c"]) ["a","","b","c",]

State
● Terraform stores state about your managed infrastructure and configuration.

● Used by Terraform to map

○ real world resources to your configuration

○ keep track of metadata

○ improve performance for large infrastructures.

● This state is stored by default in a local file named "terraform.tfstate"

● can also be stored remotely (works better in a team environment)

● uses local state to create plans and make changes to your infrastructure. Prior to any operation, Terraform does a refresh

to update the state with the real infrastructure.

https://www.terraform.io/docs/commands/refresh.html

Current State

Desired State

How do I get started?
Understand the resources of the provider (very important)

Get a free tier account with a provider (GCP, AWS, Azure)

Download the binary

Read the docs

Use it

Recommendations
Use terraform plan output

Use remote state

Backup your statefile

Review plans (two sets of eyes)

Use secret management - don’t store secrets directly in tf config files or env
variables

Plan structure

Resources
● Terraform.io
● The Terraform Book - James Turnbull
● Terraform Up and Running - Yevginy Brikman
● Me

○ greg.greenlee@insight.com
○ @BIT_greggreenle

