
Ohio LinuxFest 2019

Microservice Journey

Max Blaze

Free and accessible language education for all

The most downloaded education app in the world

30+ languages / 80+ courses

300M+ users worldwide

180 employees

Duolingo growth

0

40

80

120

160

0M

75M

150M

225M

300M

2012 2013 2014 2015 2016 2017 2018

Users Employees

A brief history

2012 2013 2014 2015 2016 2017 2018

Launch

Config
management

Auto Scaling

First microservice

Centralized
dashboards + logging

Infrastructure as code

First microservice on ECS

Why move to microservices?

Scalability

Cost savings

Velocity

ReliabilityFlexibility

How do you decide what to carve out of your monolith first?

• Start with a small, but impactful feature

• Move up in size, complexity, and risk

• Consider dependencies

0.99

Monolith
System availability

Chained microservices

0.99 * 0.99 * 0.99 = 0.97

0.990.990.99

Independent microservices

1 - (1 - 0.99)3 = 0.999999

0.990.990.99

Why use Docker for microservices?
• Standardizes the build process and encapsulates dependencies

• Local development environment similar to production

• Quick deployments and rollbacks

• Flexible resource allocation

Simplifying local development setup (old way)

1. Clone this repository.

2. Set up and activate a virtualenv and install requirements using pip install -r requirements.txt.

3. Download and install Postgres: brew install postgresql

4. Run Postgres locally: postgres -D /usr/local/var/postgres

5. Download pgAdmin3 (not totally necessary, but will make life easier).

6. Using pgAdmin3, create a new login role under your local server with name "admin" and password
"somepassword".

7. Create a DB called “db".

8. Run the migration script in the repo using python manage.py db upgrade.

9. Check that your DB is now populated with tables.

10. Set up and run memcached: brew install memcached

11. Set up and run redis: brew install redis-server

12. Set up and run elasticsearch: brew install elasticsearch

13. Finally, try to run the server using python application.py. You can test if it’s working by going here

Simplifying local development setup (new way)

$ docker-compose build

$ docker-compose up

Why use Docker with ECS?

Task Auto Scaling

Manageability

CloudWatch metrics

Dynamic ALB targetsTask-level IAM

Microservice abstractions at Duolingo
Web service (internal or external)

Worker service (daemon or cron)

Monitoring

Route53 ALB

ECS
tasks

SQS ECS taskEvent

Data stores

RDS

DynamoDB

Redis/Memcached

KMS

ELK stack

CloudWatch Grafana

PagerDuty

Microservice definition in Terraform

module “duolingo-api" {

 source = “repo/terraform//modules/ecs_web_service"

 environment = “prod"

 product = “duolingo"

 service = “api"

 owner = “Max Blaze"

 min_count = 2

 max_count = 4

 cpu = 512

 memory = 256

 ecs_cluster = "prod"

 internal = "true"

 container_port = 5000

 version = "${var.version}"

}

Billing tags

Resources

Auto Scaling

Aurora database cluster definition in Terraform

module “duolingo-api—db“ {

 source = “repo/terraform//modules/ecs_web_service"

 product = “duolingo”

 service = “api”

 subservice = “db"

 owner = “Max Blaze”

 cluster_identifier = “duolingo-api-db-cluster"

 identifier = “duolingo-api"

 engine = "aurora-postgresql"

 name = "duolingo"

 password = "${data.aws_kms_secret.duolingo_api_db.duolingo_api_db}"

 instance_class = "db.r4.large"

 num_cluster_instances = 2

}

Billing tags

Instance type

 DB engine

Continuous integration and deployment

Developer

GitHub

Jenkins
Terraform

Deployment

Terraform state

S3 bucket

Plan/apply with
version string

AWS ECS

ECR repo

Dockerfile build

Docker image push

Docker image pull

Load balancing
• ALBs and CLBs operate at different network layers

• ALBs are more strict when handling malformed requests

• ALBs default to HTTP/2

• Headers are always passed as lowercase

• There are differences in CloudWatch metrics

ALB ≠ CLB

Task-level IAM role permissions
• Apply permissions at the service level

• Do not share permissions across microservices

• Needs to be supported by the AWS client library

Standardizing microservices
• Develop a common naming scheme for repos and services

• Autogenerate as much of the initial service as possible

• Move core functionality to shared base libraries

• Provide standard alarms and dashboards

• Periodically review microservices for consistency and quality

Monitoring microservices
Web service dashboard

• Local time and UTC

• Healthy, unhealthy, and
running tasks

• Latency average and
percentiles

• Number of requests

• CPU and memory utilization
(min/avg/max)

• Service errors by AZ

• ALB errors by AZ

Monitoring microservices
Worker service dashboard

• Local time and UTC

• Running tasks

• CPU and memory
utilization (min/avg/max)

• Visible messages

• Deleted messages

Monitoring microservices
PagerDuty integration

• Schedules and
rotations are defined
in Terraform

• Emergency alarms
page (high latency)

• Warning alarms go to
e-mail (low memory)

• Include links to
playbooks

• All pages are also
visible in Slack

Grading microservices

Architecture Documentation Processes Tests

Grading microservices

• Cluster
• Instance type
• Pricing options
• Auto Scale
• Add/remove AZs

Web

Worker

API

• Task
• Resource allocation
• Auto Scale

Cost reduction options

Cluster starting point

c3.2xlarge

Reserved Instances

On-Demand

High-CPU Instance Generations

Speed $/hour Disk

c3.large - 0.105 SSD

c4.large +20% of c3 0.100 None (EBS-only)

c5d.large +25% of c4 0.096 NVMe

c5 is 50% faster than c3!

Moving to a new EC2 generation
Latest instances are generally faster and cheaper but…

• “cpu” units in ECS will not be equivalent

• Auto Scaling may not work properly between generations

(1 vCPU core = 1024 units)

c5.large
cpu = 1024

c3.large
cpu = 1024

c4.large
cpu = 1024> >

Fixed number of instances

c5d.2xlarge

Reserved Instances

On-Demand

c5d.large…c5d.18xlarge
m5d.large...m5d.24xlarge

Reserved Instances

On-Demand

Spot

Auto Scaling

Fixed number of instances

c5d.2xlarge

Reserved Instances

On-Demand

c5d.large…c5d.18xlarge
m5d.large...m5d.24xlarge

Reserved Instances

On-Demand

Spot

Spotinst cluster features

• Mixes families + sizes

• Uses RIs before spot

• 15 minute spot notice

• Fits capacity to ECS tasks

• AZ capacity heat map

Spotinst cluster features

• Drains ECS tasks

• Cluster “headroom”

• Spreads capacity across AZs

• Bills on % of savings

• Terraform support

Auto Scaling with Spotinst

What about per-microservice costs?
• Audit CPU/memory allocations for each service

• Update Auto Scaling and/or CPU allocations as needed

 Goals

60% CPU

60–80% Memory

Adjusting allocated CPU for scaling
allocatedCPU * currentUtilization = actualCPU
actualCPU / desiredUtilization = Units to set 

Example:
 Current utilization: 40%
 Desired utilization: 60%

1024 * 40% = 409.6
409.6 / 60% = 682.67

Set ECS “cpu” allocation to 683

(1 vCPU core = 1024 units)

Adjusting allocated memory
• Track memory usage between deployments

• Constantly increasing memory usage points to memory leaks

• Set containers to restart if memory exceeds 100% 

API costs

ListAllMyBuckets + GetObject > 50% of S3 cost!

Limits

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-dns.html#vpc-dns-limits
https://www.reddit.com/r/aws/comments/9bu4x4/how_are_nitro_instances_treating_everyone/

“Each Amazon EC2 instance limits the number of
packets that can be sent to the Amazon-provided DNS
server to a maximum of 1024 packets per second per
network interface. This limit cannot be increased.”

s_maj
“Nitro based instance types are running fine nowadays. Just
be aware that they might be not available in all AZs within
region. And I think Nitro is not caching DNS requests where
xen based instance were doing that.”

https://www.reddit.com/user/s_maj

Cost savings

May July August September October

EC2 compute costs

> 60% reduction from May to October

> 60% reduction in compute
costs

> 30% reduction in costs per
monthly active user (MAU)

> 25% reduction total AWS bill

Key results
• Scalability

• Manage ~100 microservices

• Velocity
• Teams deploy to their own services

• Flexibility
• Officially support 3 different programming languages

• Reliability
• 99.99% availability achieved after implementation

• Cost
• 60% reduction in compute costs

duolingo.com/careers

http://duolingo.com/careers
http://duolingo.com/careers

Resources
• Books
• Building Microservices: Designing Fine-Grained Systems (Sam Newman)
• Microservices in Production (Susan J. Fowler)

• References
• ec2instances.info
• github.com/open-guides/og-aws

• Tools and services
• ansible.com
• docker.com
• elastic.io
• github.com
• grafana.com
• jenkins.io
• pagerduty.com
• runatlantis.io
• spotinst.com
• terraform.io

http://ec2instances.info
http://github.com/open-guides/og-aws
http://ansible.com
http://docker.com
http://elastic.io
http://github.com
http://grafana.com
http://jenkins.io
http://pagerduty.com
http://runatlantis.io
http://spotinst.com
http://terraform.io

